Publications of Legenstein, R.

Select a view.
16 publication entries, 0 of them (printed in bold in the list) acknowledge the project support.
Jump to:
Book chapter
Conference contribution: poster

Paper (reviewed)

Buesing et al. 2009Buesing, L., Schrauwen, B., and Legenstein, R. Connectivity, Dynamics, and Memory in Reservoir Computing with Binary and Analog NeuronsNeural Computation (2010) 22(5):1272-1311 abstract, fulltext
Klampfl et al. 2007bKlampfl, S., Legenstein, R. and Maass, W.Spiking neurons can learn to solve information bottleneck problems and to extract independent componentsNeural Comput. (2009) 21(4):911-59.
doi:10.1162/neco.2008.01-07-432
abstract
Legenstein and Maass 2006Legenstein, R.A. and Maass, W.A criterion for the convergence of learning with spike timing dependent plasticityAdvances in Neural Information Processing System (MIT Press). (2006) 18:763-770 abstract, fulltext
Legenstein and Maass 2007Legenstein, R. and Maass, W.On the classification capability of sign-constrained perceptronsNeural Comput. (2008) 20(1):288-309 abstract, fulltext
Legenstein and Maass 2007cLegenstein, R.A. and Maass, W.Edge of chaos and prediction of computational performance for neural microcircuit modelsNeural Networks (2007) 20(3): 323-334 abstract, fulltext
Legenstein et al. 2008Legenstein, R., Pecevski, D. and Maass, W.A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedbackPLoS Computational Biology (2008) 4(10): e1000180 abstract, fulltext
Schrauwen et al. 2008Schrauwen, B., Büsing, L. and Legenstein, R.On computational power and the order-chaos phase transition in reservoir computingIn Proc. of NIPS 2008: Advances in Neural Information Processing Systems, volume 21. MIT Press, 2009 fulltext

Book chapter

Legenstein and Maass 2006bLegenstein, R. and Maass, W.What makes a dynamical system computationally powerful?In S. Haykin, J. C. Principe, T.J. Sejnowski, and J.G. McWhirter, editors, New Directions in Statistical Signal Processing: From Systems to Brain. pages 127-154. MIT Press, 2007 abstract, fulltext
Legenstein and Maass 2007bLegenstein, R. and Maass, W.What makes a dynamical system computationally powerful?In S. Haykin, J. C. Principe, T. Sejnowski, and J. McWhirter, editors, New Directions in Statistical Signal Processing: From Systems to Brain, pages 127-154. MIT Press, 2007 abstract, fulltext

Conference contribution: poster

Legenstein, R.A criterion for the convergence of learning with spike timing dependent plasticityVancouver, CA, Conf. Neural Information Processing Systems, NIPS*05, December 2005
Legenstein, R.Analysis of Cortical Microcircuits on the Systems LevelSalt Lake City, USA, Cosyne 2006, March 2006
Legenstein, R.Spiking Neural NetworksPorto, Portugal, NN 2006; Neural Networks in Classification Regression and Data
Klampfl et al. 2007Klampfl, S., Legenstein, R.A. and Maass, W.Information bottleneck optimization and independent component extraction with spiking neuronsProc. of NIPS 2006, Advances in Neural Information Processing Systems, volume 19. MIT Press, 2007 abstract, fulltext
Legenstein et al. 2008bLegenstein, R., Pekevski, D. and Maass, W.Theoretical analysis of learning with reward-modulated spike-timing-dependent plasticityProc. of NIPS 2007, Advances in Neural Information Processing Systems, volume 20. MIT Press, 2008 abstract
Legenstein et al. 2009Legenstein, R., Maass, W., Chase, S.M. and Schwartz, A.B.Functional network reorganization in motor cortex can be explained by reward-modulated Hebbian learningProc. of NIPS 2009: Advances in Neural Information Processing Systems (2009) 22: 1105-1113 abstract
Schrauwen et al 2009Schrauwen, B., Buesing, L. and Legenstein, R.On Computational Power and the Order-Chaos Phase Transition in Reservoir ComputingIn Proc. of NIPS 2008, Advances in Neural Information Processing Systems, volume 20. MIT Press, 2009 fulltext


 
. 
 

3 August 2011